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§  Transports neutrons, photons, and light element (hydrogen and 
helium) charged particles 

§  Treats fixed source and criticality problems 

§  Parallelized via domain replication and domain decomposition 

Mercury is the next-generation general purpose 
Monte Carlo particle transport code under 
development at LLNL 

§  Written in C++ with a python user interface 

§  Runs efficiently on current generation massively 
parallel computing platforms 
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§  Physics 
•  Nuclear resonance fluorescence capability 
•  Probability of initiation capability based on probability of extinction 

§  Computational Science 
•  Parallel scaling of algorithms to millions of MPI processes 
•  Threading capability 

This talk overviews recent physics and 
computational science advances in Mercury 

We are improving the physics capabilities of Mercury while enabling  
the code to run on emerging state-of-the-art computer platforms 
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§  MEGa-rays (Mono-Energetic Gamma-rays) obtained by Compton 
upscattering laser photons from high-energy electrons 

§  Gamma-ray energy can be tuned to the known nuclear resonance 
fluorescence (NRF) energies of a specific isotope 
•  NRF: photon absorbed by nucleus that subsequently decays to 

ground state through emission of one or more gamma rays with 
energies characteristic of the isotope 

•  à Use to interrogate samples for the presence of an isotope 

§  Capability to model NRF reactions being added to Mercury to enable its 
use in ongoing detector design efforts alongside the COG code 
•  NRF reaction in addition to Rayleigh (Coherent) and Compton 

(incoherent) scattering, photoelectric absorption, and pair production 

§  The MCNPX code also has an NRF capability 

An effort at LLNL is developing gamma-ray beams 
whose energies are tunable and nearly mono-energetic 

Nuclear Resonance Fluorescence 



Lawrence Livermore National Laboratory LLNL-PRES-635934 
5 

§  Incident photon energy is at 
NRF energy for 238U 

§  Rayleigh, Compton, 
photoelectric, and NRF 
reactions are modeled 
•  Source photons below 

threshold energy for pair 
production 

§  Goal of test problem is to tally 
energy spectrum of photons 
backscattered from microdot 

§  Modeled in Mercury and COG 
using 108 MC particles 

We compared the modeling of photon reactions in 
Mercury and COG for a 238U microdot test problem 

238U microdot 

Tally backscattered photons 

108 gammas 
@ 680.1 keV 

L = 1 µm 

ρ = 10-3 g/cm3 
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Mercury and COG backscattered spectra are generally 
in excellent agreement 

§  NRF emission lines in excellent agreement 
§  Discrepancy in Rayleigh scattering due to more accurate form factor 

treatment in COG 
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§  Scalability: ability of a code to perform efficiently as the number of 
parallel processes increases 

§  Focusing on weak scaling è constant work per process 
•  Examines parallel overhead and bottlenecks in the code 

We are improving Mercury to scale to large numbers 
(i.e. millions) of parallel processes 

Parallel Scaling 

Matt O’Brien 
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Non-Scalable Example: Run 
time proportional to the 
number of processors 
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Scalable Example: Run time 
proportional to the logarithm of 
the number of processors 

Enabling scalability to millions of processes requires attention to the details of 
algorithms and memory usage that may be safely ignored at smaller scales 
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The parallel scalability of several Mercury 
algorithms has recently been improved 

 
Algorithm 

Previous 
Scaling 

Improved 
Scaling 

Particle Sourcing O(Nproc) O(1) 

Global Particle Find – Cartesian Domains O(Nproc
2) O((log Nproc) (log log Nproc)) 

Load Balancing – Replication O(Nproc
2) O(log Nproc) 

Test for Done with Particle Communication O(Nproc
2) O(log Nproc) 

§  Sourcing only process-local particles coupled with scalable global 
particle find algorithm leads to scalable particle sourcing 

§  Scalable load balancing algorithm considers processor-pairs 
instead of global workload view 
•  See paper/poster by M. J. O’Brien at Monday evening session 
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§  HEU-MET-FAST-001: highly-enriched uranium 
sphere, R = 8.7407 cm, ρ = 18.740 g/cm3 

§  Weak scaling study performed on LLNL Sequoia 
supercomputer 
•  20-petaFLOP/s IBM computer with 16 PPC 

A2 CPU cores per compute node, 4 hardware 
threads per core, and 16 GB memory per 
node 

§  Weak scaling study 
•  Pure MPI parallelism, 104 MC particles per 

process 
•  26 = 64 to 221 = 2,097,152 MPI processes 
•  à Up to ~21 billion Monte Carlo particles  

tracked for the 221 process case 
§  Study uses domain replication and tests particle 

sourcing and load balancing algorithms 

We performed a weak scaling study using the 
Godiva critical sphere benchmark problem 
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Mercury particle tracking wallclock time scales linearly 
with the log2 of the number of processors for Godiva 

Results of initial scaling study demonstrate parallel scalability  
to very large numbers of MPI processes  

§  Tracking time varies 
by less than 7% when 
scaling from 64 to 
2,097,152 processors 
•  Would ideally like 

constant weak 
scaling tracking time 

§  Work is ongoing to 
improve scalability of 
additional algorithms 
in the code 
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§  Algorithm required for domain-decomposed simulations 

§  Previous algorithm stored Nproc×Nproc matrix of number of sent and 
received messages à algorithm O(Nproc

2) and hence not scalable 

§  Scalable algorithm based on Brunner, Brantley, “An efficient, robust, 
domain-decomposed algorithm for particle Monte Carlo,” JCP (2009) 
•  Algorithm is O(log(Nproc)): use non-blocking reduce and broadcast 

operations concurrently as particles are tracking 

§  Previous published results demonstrated good parallel scaling to ~8K 
processors on infinite medium weak scaling problems 

§  We have observed good parallel scaling on Sequoia to 218 = 262,144 
MPI processes on infinite medium weak scaling problems 
•  Simulations up to 221 = 2,097,152 MPI processes have also been 

completed à observed some noise above 218 processes 

We also implemented a scalable test for when 
particle communication has been completed    
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§  Mercury has traditionally used pure MPI to achieve parallelism 
•  MPI used across compute nodes + on CPU cores of individual 

nodes 

§  OpenMP threads enable parallelism across the cores of each node 

§  Simulations can now use a combination of MPI+OpenMP to 
distribute work across the cores of each node 

§  Each node may have one or more MPI processes, and each MPI 
process may use one or more threads to access compute cores 

§  Memory savings: Nuclear data stored once per MPI process instead 
of once per CPU core 
•  Expected to be important for new machines with larger number of 

cores per node and lower memory available per node 

The ability to use OpenMP threads has recently 
been added to Mercury 

Threading 

Shawn Dawson 
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An MPI+OpenMP simulation uses the CPU cores on a 
node differently than a pure MPI simulation 

Node 
CPU CPU CPU CPU 

Node 
CPU CPU CPU CPU 

Simulation 
8 MPI 

Processes 

Node 
CPU CPU CPU CPU 

Node 
CPU CPU CPU CPU 

Simulation 2 MPI 
Processes 

4 Threads 

Pure MPI 

MPI+OpenMP 
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§  Domain replication and domain decomposition distribute work 
across MPI processes 

§  OpenMP threading distributes the work of a single MPI process 
across multiple CPU cores within a node 

§  MCNP has MPI+OpenMP parallelism for the replication-only case 

§  Coarse grain threading is achieved by creating a particle vault (list 
of particles to be tracked) for each thread and distributing particles 
evenly across vaults 
•  A thread layer is required in many data structures to enable 

multiple threads to operate independently without thread locks 

§  Fine grain threading is also used in lower loop levels outside of the 
particle processing loop 

The OpenMP threading capability works with Mercury 
domain replication and domain decomposition 
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§  Godiva problem described previously 
•  Continuous energy LLNL ENDL2009 nuclear data 
•  107 MC particles per generation, k-eigenvalue 

fractional convergence tolerance 2.5×10-4 

•  Simulations give keff = 1.000188±0.00016 which 
agrees with experimental value of 1.000±0.001 to 
within statistics 

We performed a strong scaling study using the 
Godiva critical sphere benchmark problem 

§  Study performed on LLNL RZMerl Linux cluster with 16 Intel Xeon 
(Sandy Bridge) cores (2.6 GHz) and 32 GB of memory per node 

§  Investigated particle tracking time and maximum node memory as a 
function of number of threads per node used (varied from 2 to 16) 

§  Strong scaling: fixed problem size (geometry and number of Monte 
Carlo particles) and varied the number of parallel processes 
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The efficiency of the threading implementation is 
generally similar to MPI 

§  Strong scaling excellent – 
doubling processors 
reduces tracking time in half 

§  Tracking time generally 
insensitive to number of 
threads (to within ~1-2%) 

§  Using 16 threads per node  
(all cores on node) does 
degrade efficiency 

§  More opportunities for 
threading exist in 
initialization/finalization 

Number MPI Processes Per Node / 
Number Threads Per MPI Process 

Threading implementation for particle tracking is essentially  
as efficient as using MPI processes within a node 
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The use of threads for parallelism can significantly 
reduce memory usage 

§  Strong scaling with fixed 
total number of particles à 
maximum node memory 
decreases as the number of 
processors increases 

§  Nuclear data needs only be 
stored once per MPI 
process 

§  Memory reduction per MPI 
process elimination ~90-100 
MB 

Number MPI Processes Per Node / 
Number Threads Per MPI Process 

We anticipate that the memory reduction achieved by using threads 
will be important for new machines with less memory per node 



Lawrence Livermore National Laboratory LLNL-PRES-635934 
18 

§  Physics 
•  Addition of initial NRF capability is aimed at enabling the 

application of the code to ongoing detector design efforts 

§  Computational Science 
•  Goal: Enable Mercury to run efficiently on emerging state-of-the-

art computers with large numbers of processors and low memory 
per processor 

•  Significant improvements in the parallel scalability of various 
algorithms 

•  Enabling an OpenMP threading option 

We have described recent physics and computational 
science advances in the Mercury code 

Conclusions 




